Occupational exposure to styrene: modulation of cytogenetic damage and levels of urinary metabolites of styrene by polymorphisms in genes CYP2E1, EPHX1, GSTM1, GSTT1 and GSTP1.
نویسندگان
چکیده
Styrene is widely used in the production of various plastics, synthetic rubber and resins. The aim of this study was to evaluate if individual polymorphisms in xenobiotic metabolizing enzymes, related with the metabolic fate of styrene, could modify individual susceptibility to the possible genotoxic effects of the styrene exposure. Twenty-eight reinforced plastic workers and 28 control subjects were studied. In the selected population the urinary styrene metabolites mandelic (MA) and phenylglyoxylic (PGA) acids were quantified, sister chromatid exchanges (SCE) and micronuclei (MN) were assessed in peripheral lymphocytes and all the subjects were genotyped for GSTM1, GSTT1 (gene deletions), GSTP1 (codon 105 ile==>val), EPHX1 (codons 113 tyr==>his and 139 his==>arg) and CYP2E1 (DraI polymorphism in intron 6). The results obtained showed a significant difference between the levels of SCE, but not in MN levels, in exposed workers as compared with the control group. The GSTP1 and CYP2E1 individual genotypes modulate the baseline levels of SCE that are lower in non-wild type individuals for both polymorphisms. The GSTM1 null individuals with low levels of exposure have significantly higher urinary levels of MA+PGA. The present data seem to suggest that apart from the methodology usually used for monitoring populations occupationally exposed to styrene (urinary metabolites and biomarkers of early biological effects) the analysis of individual genotypes associated with the metabolic fate of styrene should also be carried out in order to evaluate the individual genetic susceptibility of exposed populations.
منابع مشابه
Influence of genetic polymorphisms of styrene-metabolizing enzymes and smoking habits on levels of urinary metabolites after occupational exposure to styrene.
Here we evaluate the influence of individual genetic polymorphisms of drug-metabolizing enzymes as well as body mass index (BMI) and lifestyle (smoking, alcohol consumption) on urinary metabolites after occupational exposure to styrene. Seventy-three workers exposed to styrene in a reinforced-plastics workplace were studied. The personal styrene exposure in the air and the urinary styrene metab...
متن کاملInfluence of Genetic Polymorphism of Styrene-Metablizing Enzymes on Occupational Exposure Monitoring to Styrene
In this study, we selected 58 styrene-exposed workers, measured personal styrene exposure, evaluated genotypes relevant drug-metabolizing enzymes (CYP2E1, EPHX1, GSTM1 and GSTT1) which may explain the variability in the urinary metabolite excretion. The results showed that, in different levels of styrene exposure groups, there is a significant association between urinary metabolites and some ge...
متن کاملEffects of Styrene-metabolizing Enzyme Polymorphisms and Lifestyle Behaviors on Blood Styrene and Urinary Metabolite Levels in Workers Chronically Exposed to Styrene
The aim of this study was to investigate whether genetic polymorphisms of CYP2E1, GSTM1, and GSTT1 and lifestyle habits (smoking, drinking, and exercise) modulate the levels of urinary styrene metabolites such as mandelic acid (MA) and phenylglyoxylic acid (PGA) after occupational exposure to styrene. We recruited 79 male workers who had received chronic exposure in styrene fiberglass-reinforce...
متن کاملSignificant association between decreased ALDH2 activity and increased sensitivity to genotoxic effects in workers occupationally exposed to styrene
ALDH2 is involved in the metabolism of styrene, a widely used industrial material, but no data are available regarding the influence of this enzyme on the metabolic fate as well as toxic effects of this chemical. In this study, we recruited 329 workers occupationally exposed to styrene and 152 unexposed controls. DNA strand breaks, DNA-base oxidation in leukocytes and urinary 8-hydroxydeoxyguan...
متن کاملGenetic polymorphisms and benzene metabolism in humans exposed to a wide range of air concentrations.
Using generalized linear models with natural-spline smoothing functions, we detected effects of specific xenobiotic metabolizing genes and gene-environment interactions on levels of benzene metabolites in 250 benzene-exposed and 136 control workers in Tianjin, China (for all individuals, the median exposure was 0.512 p.p.m. and the 10th and 90th percentiles were 0.002 and 6.40 p.p.m., respectiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology
دوره 195 2-3 شماره
صفحات -
تاریخ انتشار 2004